Results on two-bit gate design for quantum computers
نویسندگان
چکیده
We present numerical results which show how twobit logic gates can be used in the design of a quantum computer. We show that the Toffoli gate, which is a universal gate for all classical reversible computation, can be implemented using a particular sequence of exactly five two-bit gates. An arbitrary three-bit unitary gate, which can be used to build up any arbitrary quantum computation, can be implemented exactly with six two-bit gates. The ease of implementation of any particular quantum operation is dependent upon a very non-classical feature of the operation, its exact quantum phase factor.
منابع مشابه
Novel Design of n-bit Controllable Inverter by Quantum-dot Cellular Automata
Application of quantum-dot is a promising technology for implementing digital systems at nano-scale. Quantum-dot Cellular Automata (QCA) is a system with low power consumption and a potentially high density and regularity. Also, QCA supports the new devices with nanotechnology architecture. This technique works </...
متن کاملA Novel Design of Reversible Multiplier Circuit (TECHNICAL NOTE)
Adders and multipliers are two main units of the computer arithmetic processors and play an important role in reversible computations. The binary multiplier consists of two main parts, the partial products generation circuit (PPGC) and the reversible parallel adders (RPA). This paper introduces a novel reversible 4×4 multiplier circuit that is based on an advanced PPGC with Peres gates only. Ag...
متن کاملA New Design for Two-input XOR Gate in Quantum-dot Cellular Automata
Quantum-dot Cellular Automata (QCA) technology is attractive due to its low power consumption, fast speed and small dimension, therefore, it is a promising alternative to CMOS technology. In QCA, configuration of charges plays the role which is played by current in CMOS. This replacement provides the significant advantages. Additionally, exclusive-or (XOR) gate is a useful building block in man...
متن کاملGeneric parity generators design using LTEx methodology: A quantum-dot cellular automata based approach
Quantum-dot Cellular Automata (QCA) is a prominent paradigm that is considered to continue its dominance in thecomputation at deep sub-micron regime in nanotechnology. The QCA realizations of five-input Majority Voter based multilevel parity generator circuits have been introduced in recent years. However, no attention has been paid towards the QCA instantiation of the generic (n-bit) even and ...
متن کاملGeneric parity generators design using LTEx methodology: A quantum-dot cellular automata based approach
Quantum-dot Cellular Automata (QCA) is a prominent paradigm that is considered to continue its dominance in thecomputation at deep sub-micron regime in nanotechnology. The QCA realizations of five-input Majority Voter based multilevel parity generator circuits have been introduced in recent years. However, no attention has been paid towards the QCA instantiation of the generic (n-bit) even and ...
متن کامل